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Abstract
Understanding how threatened wildlife can coexist with humans over the long term is a 
central issue in conservation and wildlife management. Komodo National Park in Eastern 
Indonesia, harbors the largest extant populations of the endemic Komodo dragon (Vara-
nus komodoensis). Consistent with global trends, this species is expected to be increas-
ingly exposed to human activities and in particular growing ecotourism activities. Here 
we comprehensively evaluated how human activities affected individual and population 
level attributes of Komodo dragons. We compared Komodo dragons phenotypic (behav-
iour, body size, and body condition) and demographic (age structure, sex ratio, survival, 
and density) responses to variation in human activities across national park. Komodo 
dragons were found to exhibit pronounced responses to high human activity level relative 
to sites with low and negligible human activities. Komodo dragons exposed to ecotour-
ism exhibited significantly less wariness, larger body mass, better body condition, and 
higher survival. These results are entirely consistent with ecotourism activities that pro-
vided Komodo dragons with long-term and substantial nutritional subsidies as a conse-
quence of feeding and human food refuse. However, we also noted the potential negative 
consequences of altered behaviour and adult-biased populations in ecotourism areas which 
may influence demographic processes through intraspecific competition or predation. To 
address this issue, we recommend that three management strategies to be implemented in 
future include: (1) removal of human-mediated nutritional subsidies, (2) alternative eco-
tourism, and (3) spatial regulation of ecotourism. Furthermore, we advocate the develop-
ment of approaches to achieve a socio–ecological sustainability  that benefits both people 
and wildlife conservation.
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Introduction

Humans have caused broad scale changes in the ecological and evolutionary dynamics of 
natural systems (Vitousek et  al. 1997). Key human mediated processes that affect biodi-
versity and ecosystems include exploitation, degradation, and loss of natural resource via 
habitat modification, encroachment, and illegal harvesting (Vitousek et al. 1997; Butchart 
et al. 2010). Ecotourism is a relatively recent human activity that has experienced substan-
tial growth in the past few decades and now raises concern for its complex effects on wild-
life and habitats (Krüger 2005; Buckley 2011).

It is currently estimated that terrestrial protected areas receive eight billion tourists visits 
per year (Balmford et al. 2015). Tourism is a major human activity in protected areas and 
includes multiple types of tourism (e.g., often classified into two branches mass tourism 
and alternative tourism) (Beaver 2005). In this study we focus on ecotourism, as one sec-
tor of alternative tourism, which is increasingly recognized for its capacity to provide both 
benefits and costs to biodiversity (i.e., wildlife and habitats). Ecotourism is defined as the 
human visitation of relatively undisturbed natural areas and is undertaken for the specific 
purpose of enjoyment of natural (e.g., scenery, animals and plants) or cultural values (Rai 
2012). Positive effects of ecotourism include increased political and financial support and 
may promote research and conservation efforts with local stakeholders and tourist opera-
tors (Buckley et al. 2012; Higginbottom 2004). Ecotourism can provide increased protec-
tion to wildlife and their habitat through increased supervision in protected areas (Mac-
donald et al. 2017). Additionally, this activity can promote public knowledge and enhance 
positive attitudes toward wildlife and habitats (Curtin and Kragh 2014). Furthermore, eco-
tourism can also provide alternative socio-economic opportunities and improve the liveli-
hoods for local communities around protected areas and this may even help abate impacts 
within protected areas (Goodwin 2002; Higginbottom 2004).

However, ecotourism may also have important consequences for wild animals and asso-
ciated habitats. As such there is an increasing interest to understand how ecotourism activi-
ties influence animal behaviour, health, breeding success, and survival (Schoenecker and 
Krausman 2002; Ellenberg et al. 2006; Amo et al. 2006). Although ecotourism effects on 
animals are often predicted to be commensurate with the volume of human visitation and 
associated infrastructure development (Krüger 2005), the effects nevertheless can be highly 
variable and contextual with both positive and negative effects being reported. For exam-
ple, some animals exposed to ecotourism activities increased their antipredator behaviour 
including vigilance and flight responses (Papouchis et al. 2001; Dyck and Baydack 2004). 
These behaviours are potentially costly as they reduce the animals’ time, energy, and 
opportunities to engage in other fitness-enhancing activities (Ellenberg et al. 2006). Alter-
natively, animals may also adapt to tourists by muting their reactions and become habitu-
ated (Herrero et al. 2005; Rodriguez-Prieto et al. 2009).

Additionally, supplementary feeding or food provision to wild animals is a common 
ecotourism-related activity. This practice is used to aggregate animals to specific locations 
and improve tourist’s ability to encounter wild animals (Orams 2002; Massé et al. 2014). 
For large predators that are often cryptic, supplemental feeding may increase tourist-wild-
life interactions (Brunnschweiler and Baensch 2011) but eventually lead to a range of com-
plex behavioural and physiological consequences for wild animals (Orams 2002; Jessop 
et al. 2012; Smith and Iverson 2016).

Ultimately, ecotourism mediated effects on animal’s phenotype can lead to changes in 
fitness (e.g., survival, reproduction) and in turn influence population dynamics (Buckley 
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et  al. 2016). Physiological responses to human disturbance such as increased heart rate, 
stress hormone levels, and energy expenditure can have population level consequences 
such as reduced breeding success and survival (Dyck and Baydack 2004; Ellenberg et al. 
2006). Conversely, ecotourism related food subsidies consumed by animals can influence 
demographic parameters such as improved fecundity, survival, and population growth 
(Orams 2002; Jessop et al. 2012). Thus, in order to understand the effect of human activ-
ities on wild animals and evaluate potential conservation management implications it is 
necessary to investigate anthropogenic consequences on both individuals and populations.

The world heritage listed Komodo National Park is a major protected area in Eastern 
Indonesia and comprises both marine and terrestrial island habitats. A key reason for the 
establishment of this protected area was to conserve the endemic Komodo dragon (Iriyono 
et al. 2012). Komodo dragons are large (up to 87 kg; 3 m), long-lived (up to 60 years) pred-
atory lizards (Auffenberg 1981; Jessop et al. 2006; Laver et al. 2012). These lizards have 
a highly restricted distribution range and extant populations persist on five islands, four of 
which are in Komodo National Park (Ciofi and de Boer 2004). These dragons are flagship 
species and represent the main tourist attraction in Komodo National Park (Walpole 2001).

Whilst recent studies have reported how environmental or ecological processes influ-
enced phenotypic and population characteristics of Komodo dragons, there remains lim-
ited understanding of how human activities affect dragon ecology across Komodo National 
Park (Purwandana et al. 2014, 2015). A previous study reported how tourist related sup-
plementary feeding conducted during 1980s–1990s led to six fold density increases of 
Komodo dragons at feeding sites compared to adjacent areas (Walpole 2001). However, 
a limitation of this study was that it not determined if density related feeding effects arose 
because food attracted individuals, or supplemental nutrition improved reproduction or 
survival which then resulted in increased density. Nevertheless, this study suggested that 
ecotourism activities could alter the ecology of Komodo dragons, a point that deserves 
more detailed investigation given that human activities, given that up to 107,000 tourists 
per year currently visit Komodo National Park (Balai Taman Nasional Komodo 2017).

This study aimed at understanding to what extent different levels of human activities 
affected Komodo dragons by documenting changes in behaviour (initial reaction to human 
encounters and approach distance), morphology (body size and condition) and demography 
(population age structure, sex ratio, survival, and density). In particular, we investigated 
how Komodo dragon phenotypic and demographic responses were influenced by three lev-
els of human activities that were categorized into (1) high activities from ecotourism, (2) 
low but routine activities from Komodo National Park rangers, and (3) negligible human 
activities. In Komodo National Park, because of management related zonation practice, dif-
ferences in these human activities are largely spatially regulated and thus provide an excel-
lent opportunity to understand how scales of human interactions influence Komodo dragon 
ecology (Ramono et al. 2000; Iriyono et al. 2012).

Materials and methods

Study area

We studied the effects of human activities on Komodo dragons across Komodo 
(393.4 km2) and Rinca (278.0 km2) Islands, the two largest islands in Komodo National 
Park (8°35′22″S, 119°36′52″E; Fig. 1). These islands have a tropical monsoonal climate, 
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with most annual rainfall (mean ~ 850  mm) occurring between December and February 
(Monk et al. 2013). We selected eight sites across these two islands to conduct our study. 
Four sites were located on Komodo Island: (1) Loh Liang (K1; 5.6 km2), (2) Loh Lawi 
(K2; 9.2  km2), (3) Loh Sebita (K3; 3.8  km2) and (4) Loh Wau (K4; 1.6  km2). Another 
four sites were located on Rinca Island: (5) Loh Buaya (R1; 4.5 km2), (6) Loh Baru (R2; 
3.4 km2), (7) Loh Tongker (R3; 3.1 km2) and (8) Loh Dasami (R4; 2.3 km2). These eight 
sites were divided into three categories based on their human activity levels:

1.	 High human activity areas: Sites K1 and R1 (Fig. 1) harbor the highest level of human 
activities (~ 500/people/day/site) as a consequence of been designated areas for tourist 
visitation (mean 30,757 with range of 11,587–63,801 visitors per year between 2002 and 
2013) and a permanent presence of Komodo National Park staff (~ 10–15/people/day/
site). These sites have permanent buildings (~ 600 m2 floor area) that provide accom-
modation, offices and cafeterias for Komodo National Park staff or tourists. Habitat 
adjacent to these buildings (~ 1 ha) were converted from adjacent wooded vegetation 
types to lawn.
  Additional human activities at these sites included supplementary feeding from goat 
meat to attract Komodo dragons for visitor watching, or from food refuse produced by 
the permanent presence of Komodo National Park staff and cafeterias. Adjacent natural 
habitats in these sites were regularly exposed to human visitation through multiple daily 
guided walks for tourists and regular ranger patrols (i.e., used to monitor wildlife and 

Fig. 1   Locations (a) of the eight study sites in Komodo National Park used to assess different levels of 
human activities on phenotypic and demographic attributes of Komodo dragons. Study sites and their cor-
responding human activity level are represented by (K1) Loh Liang, (K2) Loh Lawi, (K3) Loh Sebita, (K4) 
Loh Wau on Komodo Island; whilst (R1) Loh Buaya, (R2) Loh Baru, (R3) Loh Tongker, (R4) Loh Dasami 
were located on Rinca Island. Inset depicts location of Komodo National Park within Indonesia. Examples 
of different human activities considered in this study included b tourist visitation in high human activity 
areas (K1, R1), c ranger posts in low human activity areas (K3, K4, R2) and d areas where Komodo drag-
ons were exposed to negligible human activity (K2, R3, R4)
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illegal activities). These activities were largely concentrated along a specific network 
of walking trails.

(2)	 Low human activity areas: Sites K3, K4 and R2 (Fig. 1) harbored a low level of human 
activities (~ 3 people/day/site). Each site has one small building (~ 144 m2) permanently 
occupied by 2–3 rangers. Here limited supplementary feeding was present due to ranger 
food refuse. Routine ranger patrols were conducted every other day and infrequent 
guided tourist visitation occurred.

(3)	 Negligible human activity areas: Sites K2, R3 and R4 (Fig. 1) comprised park core 
areas that are exposed to negligible human activities as they lack permanent buildings, 
absence of tourist visitation, and infrequent human presence.

Field protocols

Evaluation of Komodo dragon behaviour responses to human activities

Assessment of Komodo dragons’ behavioural responses occurred at all eight sites during 
August–September in 2013 coinciding with annual monitoring activities. This activity fol-
lowed after we finished our capture-mark-recapture based population monitoring activities 
(described below). The delay in behavioural assessment reflected that, unlike demographic 
parameters which required multiple years of monitoring to allow for robust demographic 
estimates in long-lived species, this data could be collected rapidly. However, because of 
logistical reasons, we could only allow for a single annual behavioural estimate that would 
be best indicated by data collected following completion of the population monitoring 
activities.

We collected behavioural data for 2–3 days at each study site between 0700 and 1600 h 
coinciding with the peak daily activity period of Komodo dragons (Auffenberg 1981). 
Observations were made during routine walks along trails (~ 20  km/day). Behaviour of 
each individual of Komodo dragon encountered was measured once only. To recognise, 
and prevent repeated observations, of individuals, we relied on the presence of unique paint 
codes (applied to lizards during complimentary mark recapture study) or other physical 
attributes including an individual’s body size, presence of scars and the extent of partial 
tail loss. Additionally, we discounted subsequent observations that were within 30 min or 
less than 200 m from the previously recorded encounter. We recorded two behaviours of 
Komodo dragon to human encounters:

1.	 Approach distance—this behaviour represented the proximity that an observer 
could approach a Komodo dragon before the lizard turned their head and looked at 
the observer. To standardize the scoring of approach distance, observers (AR/AA) 
approached Komodo dragons in a straight line and at a constant speed (3 km/h). The 
approach distance was measured using a 30 m long tape measure to estimate the straight 
line distance between the observers and the Komodo dragon’s position at which the 
behavioural response was initiated.

2.	 Initial reaction type—this behaviour was defined as the immediate reaction of the 
Komodo dragon to the approaching observer and scored as either no response (the 
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animal continued its normal activity) or avoidance (the lizard moved away from the 
observer).

Evaluation of Komodo dragon morphological and demographic responses to human 
activities

Trapping protocols  During the dry season (March–November) from 2002 to 2012, annual 
capture-mark-recapture of Komodo dragons occurred at each of the eight study sites (Fig. 1). 
We used aluminum cage traps (300 cm long × 50 cm high × 50 cm wide) baited with goat 
meat to capture Komodo dragons. Nine to 32 trapping locations (mean = 22  ± site, N = 175) 
were established at the eight study sites. Trapping locations were located predominantly 
in deciduous monsoon forest landscape that is considered as high quality habitat for the 
dragons (Purwandana et al. 2014). Trapping at each site took between eight and 14 days to 
complete. Within sites, trapping were set for three consecutive days, with each trap checked 
twice daily between 0800–1100 and 1400–1700 h.

After capture, dragons were restrained with rope and their mouths taped closed, and 
several morphological measurements recoded as described below. Each dragon was per-
manently identified using a passive integrated transponder (Trovan ID100a, Microchips 
Australia Pty Ltd., Australia) inserted in the upper right hind leg. All dragons were 
released at their point of capture.

Body size and condition

We used two morphological measures to infer Komodo dragon phenotypic responses to 
different human activity levels. As a measure of Komodo dragon body size we recorded 
each individual’s body mass (in kilograms) using a digital scale at the time of capture. 
We also recorded the Komodo dragon total body length (TBL) that was measured from 
the tip of the snout to the end of tail for each individual. As an index of body condition, 
a measure often used to describe the energetic, and hence health status of animals, we 
used the residuals from the regression equation of natural log transformed mass plot-
ted against total body length (TBL, natural log transformed) (Schulte-Hostedde et  al. 
2005). This commonly used index infers that individuals with negative residuals for 
body condition have a lower than average body mass for their body length compared to 
individuals with positive residuals who have a higher than average body mass for their 
body length. This body mass index has been widely used in reptiles to infer physical 
change in body mass that reflect underlying changes to tissue (e.g., muscle and adipose), 
organ and skeletal mass that would arise from broad scale changes to the energetic (i.e., 
health) status of individuals (Schulte-Hostedde et  al. 2005; Jessop et  al. 2007). Log 
transformation was used to ensure there is no non-linear allometry in the relationship 
between body mass and total body length that could confound the use of this index (Jes-
sop et al. 2007). Similarly the use of log transformed derived residuals provides a body 
condition index that is not correlated with an individual’s body mass or body length 
(Schulte-Hostedde et al. 2005; Jessop et al. 2007).

Sex determination for sex ratio estimation

Sex was determined using molecular methods for a subset of 383 individual Komodo 
dragons (138, 58 and 187 individuals in high, low and negligible human affected 
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habitats, respectively). Genomic DNA was extracted from blood in lysis buffer using 
a DNeasy Blood and Tissue Kit (Qiagen), following the manufacturer’s protocol. To 
determine potential sex ratio differences between treatments, dragon blood samples 
were genetically sexed using PCR primers that amplified sex specific alleles (Halverson 
and Spelman 2002). Amplifications were performed in a 20 µL total volume, containing 
2 µL of DNA (diluted 1:10 in TE buffer), 10 µL Gotaq (Promega), 0.5 µL of each primer 
(10  µM) and 7  µL of H2O. PCR amplifications were performed on a Corbett Palm-
Cycler using a touchdown thermal cycle program with the following parameters: initial 
denaturation at 94 °C for 5 min, followed by two cycles of 94 °C for 30 s, an annealing 
step at 65 °C for 30 s and 72 °C for 90 s; 2 cycles each with annealing temperatures of 
60 °C, 55 °C and 50 °C; 30 cycles with an annealing temperature of 48 °C; then a final 
extension step of 10 min at 72 °C. Amplifications were checked on a 1.2% agarose gel 
and amplification patterns were compared to those of a male and female whose sex had 
been verified anatomically.

Population survival

All survival analyses were conducted on capture-mark-recapture data using the Cor-
mack–Jolly–Seber (CJS) model in program MARK (White and Burnham 1999). These 
analyses estimate apparent survival rather than true survival because mortality and emigra-
tion cannot be distinguished within the CJS model (Schaub et al. 2004). Apparent survival 
is an underestimate of true survival, but because emigration occurs rarely in our study sys-
tem the difference is likely to be small.

Analyses were performed on a single combined dataset in which each site was coded 
based on its level of human activities (i.e., negligible, low, and high). To estimate sur-
vival, we developed a set of candidate models for analysis, evaluated goodness-of-fit, and 
estimated an overdispersion parameter (ĉ) for the data set. We used an information theo-
retic approach to select the most parsimonious model, based on the AICc model selection 
criterion (lower AICc values represented better fitting models). Models were then ranked 
using the quasi-likelihood AICc value (QAICc) to account for any overdispersion and their 
respective model weights (w) estimated to evaluate their strength of model support. We 
used estimated survival parameters from the top ranked model when there was clear sup-
port for a single model (i.e., model weight ≥ 0.9), otherwise we used a model-averaging 
approach that incorporated model selection uncertainty for all models with substantial 
model support (ΔAIC < 2 from top ranked model).

A candidate set of 16 models was assessed to evaluate group-specific survival estimates 
in Komodo dragons. These models considered variation in parameter combinations influ-
encing Φ (apparent survival) and p (recapture probability). To model group variation in 
survival, we also considered null and fully time- and group-dependent models to enable 
assessment of models fitted with group specifications. Here, the survival and capture prob-
ability parameters were fitted with combinations of time (t), group (g, i.e., human activities 
levels) or constant terms.

Population density estimation  Population density estimates were derived using the 
POPAN formulation of the Jolly–Seber (JS) method (Arnason and Schwarz 1995; Schwarz 
and Arnason 1996). The following parameters could be estimated from POPAN JS models: 
Φ, p, PENT (probability of entry into the population at each occasion), and N (size of super-
population, i.e., the total number of individuals present within the population during the 
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entire study period). This JS model is assumed to be ‘open’, and allows additions (births and 
immigration) and losses (deaths and emigration) between successive sampling occasions 
(Schwarz and Arnason 1996).

A set of 32 Jolly–Seber models were tested on the data set where survival (Φ) and 
recapture (p) parameters were estimated by considering all combinations of time constant 
(.) or variable (t) time, and group (i.e., human activities levels) effects (models). The PENT 
parameter was modelled as time variable or group by time combination. The N param-
eter was modelled as function of group (i.e., Ng). POPAN produces two different estimates 
of population abundance: the super population estimate (N) and the derived annual abun-
dance parameter (Ng,t) for each human activity level (g) at each annual sampling period 
(t). In this study we refer to the latter as we only wanted to estimate total abundances each 
human activity area. We assessed goodness-of-fit of the global model and estimated overd-
ispersion using the median ĉ implemented in program MARK. Komodo dragon population 
abundances were then estimated for each human activities level using only the 2011/2012 
(i.e., final sampling period) derived estimate of annual population abundance (plus SEM; 
upper and lower 95% CI). To obtain population density estimates we divided annual abun-
dance estimates for each site by its area.

The key assumptions of the CJS models are: (1) equal capture probabilities for individu-
als within a population; (2) capture occasions are non-lethal and instantaneous events; and 
(3) emigration is permanent (Williams et  al. 2002). These assumptions are not likely to 
be violated for the following reasons. Komodo dragons exhibit year-round activities and 
hence are not overly sensitive to seasonal thermal variation; nor do they exhibit undue site-
specific behavioural variation in trapping responses that could influence capture probabili-
ties, which is necessary for robust estimates of lizard survival (Purwandana et al. 2014). 
Komodo dragon capture events are of short duration (< 3 h), and no mortality was recorded 
from our trapping or capture activities. Finally, incidents of Komodo dragons moving 
between sites (i.e., emigration) were rare during our study (Imansyah et al. 2008).

Statistical analyses

The study’s statistical analyses comprised the use of six generalized linear mixed effect 
models (GLMM) that tested for the fixed effects of human activity level on each of the six 
uncorrelated dependent variables (i.e., reaction type, approach distance, body mass, body 
condition, sex ratio and density). As these dependent variables comprised data drawn from 
both Gaussian and non-Gaussian distributions, each model was fitted with its appropriate 
distribution and canonical link. For normally distributed data (i.e., approach distance and 
population density data), models were fitted with a Guassian distribution and identity link. 
For models that tested the effects of human activity levels on Komodo dragon reaction type 
and sex ratio data (i.e., categorical data), these were fitted with a binomial distribution and 
logit link. The model evaluating the effect of human activity levels on Komodo dragon age 
category data (i.e., ordinal type categorical data) was specified with a multinomial distribu-
tion and identity link. To each of these six models we included the random effect of site 
to account for data being collected from different localities. A second random effect com-
prising Komodo dragon identity (i.e., PIT tag number) was added to the two models that 
tested for the effect of human activity on body mass and body condition data, respectively. 
This additional random effect was necessary to account for multiple data measurements 
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obtained from the same individual being present within each of these data variables. All 
models were run using SPSS v.23 (IBM Corp, Amronk, USA).

Results

Behavioural responses of Komodo dragons

We recorded 54 behavioural responses of Komodo dragons across study sites: (1) high 
human activity area (N = 29 responses); (2) low human activity area (N = 11); and (3) 
negligible human activity area (N = 14). We found that different levels of human activities 
were associated with significant differences in the initial reaction type of Komodo dragons 
(GLMM, F2,51 = 3.92, P  = 0.026; Fig. 2a). Komodo dragons in the high human activity 

Fig. 2   The effects of three different levels of human activities on Komodo dragon behavioural responses 
including the a initial reaction type and b mean approach distance (± SEM)
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areas had a significantly higher proportion of no reaction whilst in negligible human activ-
ity areas they tended to run or walk away (avoidance) when encountered. However, 
Komodo dragons approach distance did not differ among sites with different human activ-
ity levels (GLMM, F2,51 = 0.86, P  = 0.44; Fig. 2b).

Morphological Responses of Komodo dragons

There was a highly significant effect of human activities on the body mass of Komodo 
dragons among sites (GLMM, F2,1871 = 21.36, P   <  0.001). Body mass in high and low 
human activity areas were found to be significantly heavier than those from negligible 
human activity areas (Post-hoc tests, P < 0.05; Fig. 3a). There was no significant difference 
in lizard body mass between high and low human activity areas (Post-hoc tests; P = 0.165).
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The body condition (residuals of body mass/TBL) of captured Komodo dragons sig-
nificantly varied among the three human activity areas (GLMM2,1871, F = 3.94, P = 0.020; 
Fig. 3b). Body condition of Komodo dragons in low human activity areas was significantly 
decreased (P < 0.05) compared to individuals in either high or negligible human activity 
areas.

Demographic responses of Komodo dragons

Age class proportion

Komodo dragon age class composition was significantly influenced by human activities 
(GLMM2,1871, F = 9.28, P < 0.001; Fig. 4a). As human activity levels increased, the relative 
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proportion of adult dragons and juveniles within populations increased and decreased, 
respectively.

Sex ratio

There was no evidence that Komodo dragon sex ratio was influenced by human activi-
ties (GLMM2,380, F = 0.28, P = 0.76; Fig. 4b). The sex ratio of Komodo dragon popula-
tions comprised 0.60 ± 0.02, 0.66 ± 0.08, and 0.63 ± 0.04% of males for low, neglible 
and high human activity habitats, respectively.

Survival estimates

From 2003 to 2012, we encountered 825 individual lizards during 1856 capture events. 
The top model [Φ (g) p (t)] received high model support (ω = 0.92) and indicated that 
survival of Komodo dragons was strongly influenced by human activities (Table  1). 
Here, apparent survival (Φ) was highest for Komodo dragons occupying high human 
activity areas, followed by low and negligible human activity areas, respectively 
(Fig. 4c).

Table 1   Cormack–Jolly–Seber 
analysis on capture-mark-
recapture data used to estimate 
survival for Komodo dragons 
populations across sites with 
three human activities levels in 
Komodo National Park between 
2003 and 2012 (n = 825)

Shown are models are ranked by Quasi Akaike Information Criterion 
(QAICc) corrected for small sample size (QAICc) and overdisper-
sion. Delta Quasi Akaike’s information criteria (ΔQAICc) indicat-
ing parameter fit differences among models, the QAICc weight (ωi), 
model likelihood (ML), the number of parameters (K) and the devi-
ance for each model. Parameter terms are specified as follows: Φ 
survival, p probability of capture, t time, (.) time invariant, g human 
activities levels

Model QAICc Δ QAICc ωi ML K QDeviance

Φ(g) p(t) 2246.48 0.00 0.92 1.00 9.00 2228.37
Φ(.) p(t) 2251.69 5.22 0.07 0.07 7.00 2237.62
Φ(g*t) p(t) 2256.36 9.88 0.01 0.01 23.00 2209.67
Φ(t) p(t) 2257.61 11.13 0.00 0.00 11.00 2235.44
Φ(g) p(g*t) 2258.77 12.29 0.00 0.00 21.00 2216.19
Φ(.) p(g*t) 2260.50 14.02 0.00 0.00 19.00 2222.02
Φ(g) p(.) 2262.67 16.19 0.00 0.00 4.00 2254.64
Φ(g) p(g) 2264.79 18.31 0.00 0.00 6.00 2252.74
Φ(t) p(g*t) 2266.38 19.90 0.00 0.00 23.00 2219.69
Φ(.) p(g) 2267.32 20.85 0.00 0.00 4.00 2259.30
Φ(.) p(.) 2268.09 21.62 0.00 0.00 2.00 2264.09
Φ(g*t) p(g*t) 2270.16 23.68 0.00 0.00 33.00 2202.75
Φ(g*t) p(.) 2270.83 24.35 0.00 0.00 19.00 2232.35
Φ(t) p(g) 2271.17 24.70 0.00 0.00 9.00 2253.06
Φ(t) p(.) 2271.97 25.49 0.00 0.00 7.00 2257.90
Φ(g*t) p(g) 2273.08 26.60 0.00 0.00 21.00 2230.51
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Population density

The top ranked POPAN model [Φ (g) p (.) pent (t) N (.)] indicated that the abundance 
parameter (N) was best formulated as a constant parameter (Table  2). Mean annual 
Komodo dragon population densities did not differ substantially in response to different 
human activity levels (GLMM2,53, F = 0.14, P = 0.87; Fig. 4d).

Discussion

The degree to which threatened wildlife can coexist with humans over the long term is 
of central importance in conservation science and policy (Carter et  al. 2012). Komodo 
National Park, a world heritage site, remains the largest protected areas for Komodo drag-
ons. As a general result, given their continued presence, Komodo dragons appear to per-
sist with the current levels of human activities occurring within Komodo National Park. 
This stands in contrast to incidences of local extirpations and range contractions observed 
in other Komodo dragon populations exposed to pervasive human activities (e.g., habitat 
modification) elsewhere across their range (Ariefiandy et al. 2015). Nevertheless, exposure 

Table 2   POPAN Jolly–Seber analysis on capture-mark-recapture data used to estimate derived population 
abundances for Komodo dragons populations across sites with three human activities levels in Komodo 
National Park between 2003 and 2011/2012 (n = 825)

Shown are models ranked by Quasi Akaike Information Criterion corrected for small sample size (QAICc) 
and overdispersion. Delta Quasi Akaike’s information criteria (ΔQAICc) indicating parameter fit differ-
ences among models, the QAICc weight (ωi), model likelihood (ML), the number of parameters (K) and the 
deviance for each model. Parameter terms are specified as follows: Φ survival, p probability of capture, pent 
probability of entry, N superpopulation abundance, t time, (.) time invariant, g human activities levels

Model QAICc Δ QAICc ωi ML K QDeviance

Φ(g) p(.) pent(t) N(.) 2379.13 0.00 0.39 1.00 11 2356.9636
Φ(g) p(.) pent(t) N(g) 2379.78 0.66 0.28 0.72 13 2353.5569
Φ(.) p(.) pent(t) N(.) 2382.15 3.02 0.09 0.22 9 2364.0381
Φ(g) p(g) pent(t) N(g) 2382.44 3.31 0.07 0.19 15 2352.1434
Φ(g) p(g) pent(t) N(.) 2382.68 3.55 0.07 0.17 13 2356.4499
Φ(.) p(g) pent(t) N(.) 2384.08 4.95 0.03 0.08 11 2361.9175
Φ(.) p(g) pent(t) N(g) 2384.72 5.59 0.02 0.06 13 2358.491
Φ(.) p(.) pent(t) N(g) 2384.94 5.82 0.02 0.05 11 2362.7805
Φ(t) p(.) pent(t) N(.) 2386.14 7.01 0.01 0.03 14 2357.8763
Φ(g*t) p(.) pent(t) N(.) 2388.00 8.87 0.00 0.01 26 2335.1211
Φ(t) p(g) pent(t) N(.) 2388.21 9.09 0.00 0.01 16 2355.8746
Φ(t) p(g) pent(t) N(g) 2388.83 9.71 0.00 0.01 18 2352.407
Φ(t) p(.) pent(t) N(g) 2388.95 9.82 0.00 0.01 16 2356.6076
Φ(g*t) p(.) pent(t) N(g) 2389.23 10.11 0.00 0.01 28 2332.2171
Φ(g*t) p(g) pent(t) N(.) 2389.78 10.65 0.00 0.00 27 2334.8346
Φ(g*t) p(g) pent(t) N(g) 2390.01 10.88 0.00 0.00 29 2330.918
Φ(t) p(g*t) pent(t) N(.) 2393.95 14.82 0.00 0.00 33 2326.5389
Φ(.) p(.) pent(t) N(g) 2475.37 96.25 0.00 0.00 10 2455.2381
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to existing human activities and in particular ecotourism can affect the ecology, through 
diverse effects on the phenotype and demography, of Komodo dragons.

Effects on phenotypic attributes of Komodo dragons

Komodo dragons from high human activity areas exhibited pronounced differences in 
behaviour and morphology compared to individuals inhabiting areas characterized by low 
or negligible human presence. In high human activity areas, Komodo dragons showed 
habituation to humans with reduced negative reactions (avoidance) recorded. Such 
responses may arise in animals when their encounters with humans are perceived as neutral 
and present little risk (Knight and Cole 1991; Rodriguez-Prieto et al. 2009). Habituation 
by Komodo dragons would reduce the costs associated with increased anti-predator behav-
iours (Romero and Wikelski 2002). However, habituation of Komodo dragons to humans 
may have two undesirable consequences. These include increased livestock predation 
around villages and more importantly an increase in non-lethal attacks by Komodo dragons 
on humans within ecotourism areas (Ardiantiono, unpublished data).

Physical changes including increased body size and condition were observed in indi-
viduals resident in high human activity areas compared to dragons inhabiting other types 
of human activity areas. These responses are consistent with Komodo dragons receiving 
supplementary feeding resulting from ecotourism activities and food refuses from ranger 
posts. Such phenotypic changes are based on mean site level measures taken from individ-
uals captured across several square kilometers of habitat, suggesting that even highly local-
ized food subsidies can have broad scale effects on Komodo dragons. These phenotypic 
effects are entirely consistent with those first reported by Walpole (2001) and now indicate 
that food subsidies have had long-term effects on Komodo dragons. Interestingly, in low 
human activity areas (e.g., sites with ranger stations), whilst the body mass of Komodo 
dragons was heavier than that of individual’s resident in negligible human activity areas, 
we recorded a decrease in body condition. Given the substantially lower levels of food sub-
sidies provided in such areas due to the absence of supplementary feeding (i.e., used in 
ecotourism areas), it is possible that larger Komodo dragons are nonetheless attracted to 
ranger stations because of olfactory food related cues that do not provide similar energetic 
subsidies and possibly act as deterrents to natural foraging behaviour which may explain 
their reduced body condition at these areas.

Effects on demographic attributes of Komodo dragons

Human activities were also associated with demographic consequences for Komodo drag-
ons. We found evidence that Komodo dragons’ resident to high human activity areas exhib-
ited an adult biased age structure, had higher survival, but importantly their sex ratio and 
population densities were not significantly different from those estimated at other sites. 
These results again suggested that food subsidies provide additional nutrition with signifi-
cant effects on population size structure and survival rates (Oro et al. 2004; Dempster et al. 
2011; Jessop et al. 2012).

Komodo dragons in high human activity areas were disproportionally biased towards 
heavier adult lizards, but this was not further exaceberated by any sex ratio skew towards 
large male individuals as observed in other monitor lizard populations exposed to sup-
plemental feeding (Jessop et al. 2012). Hence phenotypic effects may arise not only from 
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direct food subsidies, but also because these areas attracts larger individuals, who can 
monopolise food by aggressively displacing smaller dragons. Adult individuals, provi-
sioned with nutritional benefits, would also account for the higher survival observed in 
high human activity (Laver et al. 2012). It is also conceivable that because large individu-
als compete for food subsidies, that may lead to local selection for high fitness individuals. 
This, in turn, would contribute to greater survival and differences in population dynamics 
compared to natural populations (Oro et al. 2004). Similar results could arise if high human 
activity areas had relatively large densities of prey, however no evidence for an increase in 
ungulate prey density was ever recorded across the studied areas (Purwandana et al. 2015; 
Ariefiandy et al. 2016).

An adult biased population structure may present some negative consequences for local 
Komodo dragon populations. For example, Komodo dragon population densities were not 
significantly different among the different human activity areas. This may indicate that 
adult biased populations could displace or predate smaller individuals (Auffenberg, 1981) 
to reduce overall densities. If present, both types intraspecific interactions would potentially 
limit recruitment beyond the apparent survival benefits from supplemental feeding and 
thus in part constrain local population growth and limit population densities (Kvarnemo 
and Ahnesjo 1996; Buckley et al. 2016). In this sense, high human activity areas may act 
as a weak ecological traps, with low-quality habitats preferred over adjacent higher qual-
ity habitats with higher carrying capacity and potential for increased fitness (Gilroy and 
Sutherland 2007). An ecological trap is a habitat that is attractive to animals, yet functions 
demographically as a population sink or at least constrains population growth (Fletcher 
et al. 2012). Ecological traps can arise when there is a decoupling between the habitat pref-
erence of individuals and the fitness consequences of their habitat choice (Battin 2004). 
Thus, to some extent, high human activity areas may function as ecological traps by pro-
viding cues to adult Komodo dragons that potentially influence the potential for younger 
individuals to normally demographically function (i.e., via recruitment and survival) and 
contribute to broader population processes.

Implications for Komodo dragon management

Our study indicated that in sites considered to have high level of human activities, which 
cater for ecotourism, had some important effects on Komodo dragon ecology. These effects 
arise not only from tourist visitation, but also from food subsidies (e.g., supplementary 
feeding and food refuse) provided within Komodo dragon habitats.

Properly managed ecotourism can generate long-term conservation benefits for Komodo 
dragons. At present, ecotourism has provided additional economic resources for KNP man-
agement and employment opportunities (e.g., as tourist guides, hospitality/transport ser-
vices and souvenir sellers) for local communities (Walpole and Goodwin 2000; Goodwin 
2002). The increasing popularity of Komodo dragons and KNP (especially after its estab-
lishment as one of the New Seven Wonders of The Natural World in 2011) has also greatly 
increased public and government support for this threatened species (Erb 2015; Hakim 
2017). In addition, education presented by tourist guides may contribute to helping tour-
ists increase positive attitudes toward Komodo dragons, as predators are often perceived 
as scary and dangerous animals which can hinder conservation efforts (Macdonald et al. 
2017).
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Nevertheless, expansion of ecotourism activities must be carefully considered to limit 
negative impacts on animal populations as well as human-Komodo dragon conflicts. In 
order to reduce long-term effects of human presence on Komodo dragon populations, 
we recommend three management strategies to be considered by Komodo National Park 
authority.

First, supplementary food resources made available to Komodo dragons for either 
enhancing visitor experience or as a refuse from ranger stations should be regulated. Ide-
ally, additional food resources should be eliminated entirely and waste disposal improved 
through, for instance, recycling and transport of waste out of Komodo National park 
boundaries. Such practices are likely to lead to a decrease in anthropogenic induced pheno-
typic and demographic effects observed in Komodo dragons.

Second, Komodo National Park managers should consider alternative ecotourism activi-
ties to reduce human influence on Komodo dragons and their habitats. This may include 
devising additional walking trails to show visitors a wider variety of Komodo and Rinca 
Island terrestrial habitats as well as specific tours targeting flagship species other than 
Komodo dragons, such as yellow-crested cockatoos (Cacatua sulphurea). Improved facili-
ties and interpretation and welcome centers for visitors along with diversified nature and 
wildlife tourist attractions would reduce detrimental effects of direct interactions between 
humans and Komodo dragons.

Third, the rapid, foreseeable growth in ecotourism will probably intensify its direct 
impact on Komodo National Park. Currently, almost all existing tourism facilities and infra-
structure (e.g., airports, resorts, hotels, restaurants) are located out of Komodo National 
Park, on the neighboring island of Flores. However, if future resorts were to be built inside 
the park, then careful evaluation should be made on how planned infrastructure are likely 
to impact Komodo National Park’s environmental assets. Visits to the park should remain 
regulated through use of specific and spatially limited sites where tourists can observe 
Komodo dragons. Additionally, we advocate a regional management approach where 
future ecotourism and infrastructure are developed in areas adjacent to other reserves that 
would limit ongoing tourism impacts on Komodo National Park.

Conclusions

This study emphasizes the importance of assessing the effects of ecotourism on wildlife 
in Indonesia. A key strength of this study was that it considered human effects at large 
spatial and population-level scales, attributes needed to best inform management for the 
potential of broad scale effects on wildlife. Currently, the Indonesian government aims at 
attracting 21.5 million tourist visitations (20 million local and 1.5 million international vis-
itors) to protected areas during the 2015–2019 period (Kehutanan 2015). This would likely 
increase the impact of tourism on wildlife. It is therefore timely that stakeholder meetings 
are undertaken to develop approaches that evaluate how to integrate political, economic, 
and ecological objectives to ensure that Indonesia’s astonishing biodiversity is valued and 
protected through social–ecological sustainability that benefits both people and wildlife 
conservation (Walsh and Mena 2016).
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